
ROCKET FUELED PROCESS
ADVANCED LEAN PRODUCT DEVELOPMENT

FOR SOFTWARE STARTUPS
BY WILLIAM BELK

“Software businesses are challenging. The startup environment is completely
unpredictable. Teams need support structures to combat complexity and risk.”

2

RO C K E T F U E L E D P RO C E S S

v 1.4

© 2012-2017 by William Belk

All rights reserved. No part of this book may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information stor-
age and retrieval system, without permission in writing from the author.

3

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Dedicated to my father, my uncles and Matthew Otto,

my first software mentor, who introduced me to lean

and agile software principles.

4

RO C K E T F U E L E D P RO C E S S

Who is this book for?
While the contents of this book focus on software product development,
its lean principles can apply to any type of product development. As
software product developers we often intersect with the distribution of
physical products. We also find ourselves exposed the entrepreneurial
side of the industry through fundraising, reporting and testing new prod-
uct concepts. Lean transcends all products, disciplines and services.
As such, this book is for all builders, entrepreneurs and designers.

All illustrations by Dave Savage | www.savagemonsters.com

5

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Table of Contents

FOREWORD	 8

CHAPTER 1: PRODUCT 101	 11
The Beauty of Deconstruction	 12
User Centered Design	 13
The Declaration	 15

CHAPTER 2: REALITY AND CONSTRAINTS	 16
Traditional Models of Product Development	 17
What is the Reality of Building Software?	 18
Mastery & Unrealistic Behavior	 19
Prioritize The Real Value We Are Creating: ROI Reality	 19
The Beauty of Constraints	 21

CHAPTER 3: INTRO TO LEAN	 23
What is Lean?	 24
Lean Startups and the Democratization of Learning	 25
Concept to Iteration	 26

CHAPTER 4: TOTAL COST OF OWNERSHIP	 29
Understanding Total Cost of Ownership - Lifecycle Economics	 30
Understanding The Impact of Debt	 33
Debt In Code	 33
Debt In Culture	 34
Debt In Process	 36
Debt In People	 36

CHAPTER 5: BATCH SIZE & WORK IN PROCESS (WIP)	 39
Understanding Batch Sizes and Risk	 40
Implementing Work in Process Constraints	 42

6

RO C K E T F U E L E D P RO C E S S

Eliminating Unnecessary Work In Process (WIP)	 42
Synchronicity Is Essential	 43
Synchronize Small Batches Around Common Goals	 44

CHAPTER 6: TOOLS & METHODOLOGIES	 45
Tools are just artifacts of our foundation	 46
Overview of some popular development methodologies for startups	 46
Agile	 47
Scrum	 47
Step 1: Planning Meeting	 49
Index Cards	 49
Step 2: The Sprint, also called the Cycle or Work Iteration	 49
Step 3: The Daily Standup	 50
Step 4: Retrospective	 51
Kanban	 52

CHAPTER 7: THE SIMPLE TEAM PRINCIPLE	 53
The Simple Team Principle	 54
1. Simple Scope Agreement	 55
2. Simple Build Agreement	 55
3. Simple Validation Agreement	 56
We Have Completed One Iteration	 57

CHAPTER 8: STRUCTURING TEAMS FOR SUCCESS	 58
Building Ethical Systems	 59
Team Structure	 60

CHAPTER 9: SKETCHES, WHITEBOARDS & WIREFRAMES	 62
Do It Like Picasso	 64

CHAPTER 10: FINANCIAL MODELING	 66

CHAPTER 11: KEY METRICS & SUCCESS MEASUREMENT	 70
Metrics and Validation Analysis	 71

7

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Team Measurement	 72
Micro Experiment Testing & Optimization	 73

CHAPTER 12: WHAT MAKES A GREAT DEV TEAM	 74
Product Managers	 75
Experienced Engineers	 76
Systems Engineers	 78
Hiring Personalities	 79

CHAPTER 13: GO MAKE A CUSTOMER HAPPY, TOMORROW	 80

CHAPTER 14: Random Musings	 82
Good companies are always in Beta	 83
Advice for Small Startup Teams	 83
Advice for Small Teams in Large Organizations	 83
Advice for Product Managers	 84
Advice for Engineers	 84
About the Author	 85

8

RO C K E T F U E L E D P RO C E S S

FOREWORD

Software businesses are

challenging. The startup

environment is completely

unpredictable. Teams need support

structures to combat complexity

and risk.

9

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

With the world as its stage, the promise and limitless scale of the Inter-
net has arrived in a major way. Our time online only increases with con-
nected devices. IoT is just emerging. We trade online. We date online.
We work online. Our workout data is online. Our cars are now online.
Even our ten year old nephew has an online persona.

With more than a decade of rapid growth in the software-as-a-service
(SaaS) and platform-as-a-service (PaaS) IT segments, the cost of ex-
perimenting with software products continues to decline. Companies
like Amazon, Heroku, GitHub, Google, Facebook, SalesForce and Tra-
visCI have fostered untold innovation by offering their products as a ser-
vice to companies who pay for usage or contribute to their platforms
with value-added products.

In addition to the ‘platform as a service’ model shown by Amazon and
others, innovation is being fueled by a maturing machine of company
production. Angel investors are frothing. Seed funds are frothing. VCs
are frothing. The IPO market is always cycling. ‘Getting funded’ has
never been easier; there has been a wholesale democratization of cre-
ating Internet startups.

All of this innovation creates a great deal of excitement. While we exist
in an industry where it is surprisingly difficult to become profitable, there
are few other places where a twenty person team can generate $1B in
perceived value in 24 months. The mythical lore of Internet founder mil-
lionaires has been romanticized from blogs to movies.

However, the road to Internet stardom is not paved with gold. The start-
up lifestyle is one filled with risk, stress, and in many cases, poor quality
of life. If we are fair to assume that only 2% of startups achieve a pos-

10

RO C K E T F U E L E D P RO C E S S

itive liquidation event, there must be powerful realities that dictate how
we should, or should not build. One of the largest factors in product
development is complexity. Complexity in software business systems
is created by a dynamic and organic environment where innovation fu-
els change, capital fuels more innovation, and code must be able to
change as quickly as the business, often pivoting overnight toward a
desired path.

Software businesses are challenging. The startup environment is com-
pletely unpredictable. Teams need support structures to combat com-
plexity and risk. Without them, failure is almost certain. Successful soft-
ware builders and entrepreneurs do not ‘get lucky.’ They learn their way
to success. They learn how to influence their outcome. They learn how
to build sustainable businesses, people-centric systems, and efficient
processes.

Lean product development becomes ever more important as the speed
of business becomes realtime. Applications and services are faster, in-
formation is faster, the financing channels are faster, thus our develop-
ment processes must be faster without sacrificing quality. One can have
the most innovative ideas in the world, but if a development process
cannot support the production of those ideas, the product or business
will not achieve its full potential.

11

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 1: PRODUCT 101

It’s happening all around us.

People are having serendipitous

episodes, and it all started with

a product designer, somewhere,

tucked away, cranking on

something special.

12

RO C K E T F U E L E D P RO C E S S

Product designers exist to solve problems, to reshape the world, to in-
vent the what and why, noodle about the how, and shepherd new ideas
and experiences into the world. They share the same drive as traditional
engineers, as scientists, as mathematicians, as physicists.

The Beauty of Deconstruction
Many great products have been born from the deconstructive pursuit.
Someone sitting on a stool, leaning back, trying to understand and
rethink the big picture. Twelve years ago art theory changed my life.
A group of my peers critiqued things that I created painstakingly over
hours, days and weeks. For the first time in my life, I had to defend to a
group of people why I created something. Up until that point, I just built
for the sake of building. For some months, maybe years, this decon-
structive ritual put my mind into a fragile state. Coming to terms with
the fact that I had almost no real understanding of why I was building
things, or more importantly with the outward absurdity of some of my
logic, was incredibly difficult.

Trying to peel back the layers of something and target the essence of
intent can have profound results. This began to make itself evident to
me in artworks like Marcel Duchamp’s Ready Mades, David Hammon’s
selling snowballs in Harlem, Carsten Höller’s Light Wall, Dan Flavin,
James Turrell and Steve Irwin’s light works.

Just as in art, deconstruction in software process has proven powerful,
if not revolutionary.

13

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

User Centered Design
One of the most compelling aspects of concepting and designing new
software features is the blank canvas. One gets the opportunity to test
their ideas about what software should be tomorrow, often with little
responsibility to yesterday’s assumptions. The blank canvas comes with
a great deal of responsibility. As product designer, who do I choose to
be accountable to?

Product development is so obviously about the end user. Every product
designer understands this, right? Great product designers are able to
shield influences from their personal and professional lives, the good
and the bad, and focus on how to provide end users with the best ex-
perience. Quite honestly, the software world is littered with inexperi-
enced product managers, UI designers, software engineers and found-
ers who make decisions based on strange emotions, social perception,
organizational pressures, and sometimes just because they are stub-
born asses. It is very easy to avoid this behavior.

Empathy. The most successful product designers embody it. They em-
pathize with the end user. There is a serious problem that needs to be
solved. End users don’t care what programming languages we use,
how many provisional patents we’ve filed for, how many Stanford MBAs
we have on our team, what our post-money valuation was, who our ad-
visors are, or how many instances we’re running on Amazon. End users
want serendipity. Someone behind the veil really understands them.

Look around at all the happy people. Her first iPhone. My relentless
Instagram addiction. Her AirBnB travels. His personalized Nike IDs that
say “Suck It, USC.” My sister’s Toyota Prius. Lady Gaga’s Little Mon-
sters. Yuppies and their Vita-Mix blenders. The tourists at a Los Angeles

14

RO C K E T F U E L E D P RO C E S S

beach stuffing their face with In-N-Out burgers, animal style. It’s hap-
pening all around us. People are having serendipitous episodes, and it
all started with a product designer, somewhere, tucked away, cranking
on something special.

Simplicity. The most successful product designers embrace it. Simple
products are easy to use, easy to engage with, and easy to place in
one’s life. Simple products cost less to maintain. Simple products can
be brought to market quickly.

Look at Craigslist. A beacon of simplicity and still an example some
people love to hate. Look at Subaru. Half of their vehicles use the same
chassis. Most of their vehicles can share the following essential compo-
nents: engines, transmissions, brakes, seats. Look at Instagram, one of
the fastest growing mobile applications in history. It all started with low

15

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

resolution imagery, no zoom, no swiping, nothing extra. Instagram is all
about sharing a moment and social reciprocation. Take a picture, add
some contrast and special sauce, share it. Double tap to like. That’s it.
So simple, it’s the essence of a feedback loop.

The Declaration
As product designers, we must be able to communicate with others
who will help us build our products. These people can be investors,
engineers, marketing folks, business partners.

Sometimes we are working at the feature level. For example, building
a review system for e-commerce products, or a REST API. Sometimes
we are conceiving of a larger project like an entire startup.

When working at the startup level, we should be able to explain the es-
sence of a product in one sentence. In so doing, we set the tone for all
development to come. If it takes more than thirty seconds for someone
to truly appreciate your value proposition, you’re in serious trouble.

Here are few great examples of product declarations from the web and
beyond:

•	 “Google perks at CostCo prices.” - BetterWorks
•	 “Expenses don’t have to suck.” - Expensify
•	 “When it absolutely, positively has to be there overnight.” - FedEx
•	 “The world’s online marketplace.” - Ebay
•	 “Organize and share the things you love.” - Pinterest
•	 “All your travel plans in one spot.” - TripIt

16

RO C K E T F U E L E D P RO C E S S

CHAPTER 2: REALITY AND CONSTRAINTS

The young developer tends to

underestimate complexity and

under-appreciate the true mastery

required to design and maintain

software at the elite level.

17

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Traditional Models of Product Development
Traditional models of software product development view the world
as static. This view often separates the ‘knowers’ from the ‘builders.’
Strategy and Product people are paid to plan the product. Engineers
are paid to build it. This type of world view most often generates the
Waterfall process of product development.

The term Waterfall Development describes a process where a mono-
lithic product is shipped to the customer on a specific day and time,
with all assumptions that influence the product remaining shielded from
customer input during the development period.

The Waterfall process needs certain things in order to retain its author-
ity. The Waterfall process needs blind assumptions. After all, if we have
a process that does not need streaming customer feedback, then we

18

RO C K E T F U E L E D P RO C E S S

do not need to accommodate change. If we cannot accommodate
change, then we must be correct in order to succeed.

The Waterfall process needs documentation, and lots of it. If we’re
not worried about learning along the way, then we don’t have to worry
about our documentation changing. As such, we will probably want to
front load all of our work so we can hand over a 120-page PRD (prod-
uct requirements document) to our engineers and continue working on
our golf game while we wait for them to finish.

Once upon a time, software was shipped on disk and the Waterfall pro-
cess was king. There was no such thing as streaming customer feed-
back. Oh, how times have changed...

What is the Reality of Building Software?
Traditional models of software development have a warped, idealistic
foundation. Successful software systems are organic, dynamic. Build-
ing software is an empirical process. Every next piece of information re-
shapes our reality. No two companies are the same. No two codebases
are the same. Furthermore, software systems are built by people. No
two founders are the same. No two teams are the same. Something
could happen on a Monday that requires an entirely new direction by
Friday. One of our employees can quit. One of our service providers can
go out of business. One of our competitors could beat us to market by
two months.

Because software business systems are so dynamic, our development
processes must accept change as a constant. We must build frame-
works for learning, thinking, and workflow control that better our chanc-
es of success.

19

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Mastery & Unrealistic Behavior
It is often said that in general pursuit, mastery comes after 10 years or
10,000 hours of practice. This is certainly no different in the software
startup world. To be sure, some young entrepreneurs burst onto the
scene with perfect timing, doted on by investors and suitors alike, and
enjoy an early exit. However, for the other 99% of product develop-
ers, it’s a hard road. It takes years to develop the personal relationships
and analytical tools necessary for success. The mythically optimistic
approach imbued by many accelerators and young teams borders on
ridiculous.

Until a person has ventured into the depths of mission-critical systems,
it is impossible to respect and appreciate the nuanced complexity of
building and maintaining proprietary software systems. Quite so, young
engineers and inventive types, with all their innocence, magical problem
solving, beautiful creativity and mystical curiosity, cannot be trusted. The
young developer tends to underestimate complexity and under-appre-
ciate the true mastery required to design and maintain software at the
elite level. The young developer needs thinking frameworks and tools to
help navigate the risky waters.

Prioritize The Real Value We Are Creating: ROI Reality
Distraction is often the order for young product developers and entre-
preneurs. Most of the people reading this book have at some time been
perplexed seeing someone obsess over something completely unrelat-
ed to a product’s core value. Wasted cycles go by, confused employ-
ees, advisors and investors see little or no return on investment. Most
importantly, end customers vote with their time and use other products
that better solve their problems.

20

RO C K E T F U E L E D P RO C E S S

This ‘cart before the horse’ distraction is common in the incubation stag-
es, where product developers sometimes fixate and obsess about future
scenarios that are entirely gated by the fundamentals. If we cannot take
a credit card online, and send an order to our warehouse, no amount
of social-K-factor-sharing-economy-genius is going to help us generate
revenue. If we have an ad-based revenue promise, worrying about sell-
ing ads to advertisers should surely come after we figure out how and
why we are going to build an amazing destination to get eyeballs, com-
bined with a deep understanding of how much each visitor will cost us.

will cost you.

Young developers also tend to measure their future feature set against
the monolithic market leaders like Google, Amazon and Facebook,
overlooking that these giants have had teams of 50+ engineers working
for 5-10 years developing and refining features. No amount of optimism
can replace time and man-hours. Keep it simple.

21

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

We must distill and master the core of our business first. Arrive to mar-
ket before our competitors. Compromise and complete the most im-
portant, smallest increment of value. Then use our new perspective to
solve the next problem. Often our priorities will change dramatically over
time. What seemed vital four weeks ago may be of trivial importance
tomorrow.

The Beauty of Constraints
Some of the most creative and beautiful examples of product develop-
ment and engineering are born from situational constraints, or boundar-
ies that must be respected.

Americans traveling in Tokyo have experienced the crisp efficiency of
Japanese spaces. Europeans traveling in Indonesia learn to love the
banana leaf food pouch that is made to eat without utensils. Javascript
developers show their skills by building entire applications that occupy
less than 1K of space. Turntablists create complex compositions using
only records and a mixer. Conceptual artists once reinvented the paint-
ed canvas through minimalism.

Successful entrepreneurs and product developers thrive within a system
of constraints. At the inception of each new product they use steadfast
discipline to define the constraints within which they must operate for
the economic benefit of the business.

Any team who has relied on external service providers is familiar with
compromise and constraints. Successfully operating within constraints
can afford them competitive advantages like rapid time to market, re-
duced risk profiles, lighter personnel needs, faster learnings, and so on.

22

RO C K E T F U E L E D P RO C E S S

To use an example that surely arises in any modern dev shop, a great
mobile product developer understands the cost of application updates
and operating system compliance, the places where they absolute-
ly must have native interfaces, the places where they can use a web-
view to minimize the cost of change and share components across
platforms.

Further examples of software development constraints are testing and
code practice requirements. Faced with the gross cost of poor code
quality, great engineering leaders first provide their teams with the auto-
mated tools to write, enforce, test and deploy high quality code before
writing even a single line of application logic.

Time can also be a powerful constraint. Software hackathons are a
great example of this. Teams agree to design, build and demonstrate a
working prototype in 12-24 hours. Watch a winning hackathon team in
action, and you will witness a world of disciplined compromise for the
sake of the end product.

In the end, the business world is one giant hackathon. It seems each
year the world moves faster and faster, and to the fast go the spoils.
For the fast and learned product developer, efficiently validating her as-
sumptions with minimal risk, there is no equal. How do we become
her? How do we develop thinking and learning frameworks that allow
us to manage time, resources and risk? How do we deconstruct our
practice and improve our chances for success in this crazy industry?

The answer is Lean.

23

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 3: INTRO TO LEAN

With a lean process we try to

rapidly and predictably produce the

smallest synchronized batches of

demonstrable customer value.

24

RO C K E T F U E L E D P RO C E S S

What is Lean?
Like most things in our complex software world, the definition of Lean is
simple, yet its tool set is ever changing, and its workflow has yet to be
completely solidified. Quite simply, lean is about continually improving a
development process while removing waste from the system. Lean is
a state of being, a practice, a deconstructive pursuit that encourages
reality and learning over assumptions.

The more information we have about something, the better prepared
we are to respond to its needs. If we have information coming in small
batches, we will be able to respond to that information much more
quickly. The faster we build and ship software, the faster we learn. The
more we learn, the more we validate our hypotheses and assumptions.

25

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Conversely, the more waste we generate, the slower we become. We
inhibit our ability to execute, to respond to market changes. Because
we all work for businesses that pay salaries, our bottom line is always
financial. If the factors of technology, people, product, structure or pro-
cesses prevent us from responding to change and innovating for our
financial benefit, or for the benefit of our customers, those factors must
be deconstructed and improved in order to build a more profitable and
sustainable business.

**If you’re reading this book, you likely already know of the origins of
lean coming from places like the Toyota Production System in Japan.
The Internet is filled with detailed information about the historical origins
of lean. As such, I will not bore you here.**

Lean Startups and the Democratization of Learning
We have seen an explosion in the ‘lean startup’ community since 2009,
conservatively. These ideas are not new. Their foundation brought us
process methodologies like Agile, Extreme Programming, Scrum and
Kanban, automation frameworks like Chef and Rightscale, testing
frameworks like JUnit and Rspec, continuous integration servers like
Cruise Control and Jenkins, tracking tools like Jira and Pivotal Tracker,
companies like Optimizely and Kontagent.

Steve Blank wrote some books. Eric Ries wrote a book. Donald Rein-
ertsen wrote some books, one of which I consider to be the holy refer-
ence manual of product development economics called The Principles
of Product Development Flow.

Most accelerator programs promote ‘lean’ startups. Contemporary de-
velopers and mentors associate being Lean with the ability to learn and

26

RO C K E T F U E L E D P RO C E S S

act quickly, while keeping transparency close to 100 percent. In short,
the lean startup methodology has become the thinking framework and
metrics dashboard for learning about your software product. In 2007,
we did not have this movement. It has created a framework and com-
munity that is democratizing learning for startups. Great stuff to be sure.
Combine this democratization of learning with an unprecedented num-
ber of startup accelerators and angel investors, and our greater com-
munity has democratized having a startup altogether.

However, all of these frameworks have not democratized real innovation
and authenticity. They have not democratized building products that the
world really needs. It’s easy to get caught up in the hype, excited by new
information and tools. Before you jump in with both feet to the flames,
make sure you’re doing something authentic. Strive to be cool. Strive to
deconstruct the world. Don’t just create a service or commerce startup
because you can. Don’t just launch a product that lacks your emotional
investment and listen to your random customers 100 percent; you are
bound to offer the world yet another spiritless company. If your goal is
to generate pure cash, startups are probably not your best bet. Howev-
er, when you work with great people in such a fluid industry, few places
can give you the excitement and pace of an Internet startup.

Concept to Iteration
Ultimately as software builders, our goal is to build and release working
software in the shortest possible time cycle. We want to make the fol-
lowing funnel as efficient as possible, at the same time eliminating any
waste that drags down our business:

27

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Concept

Distill

Build

Deploy

Iterate

With each idea or concept, we must distill. Any excess or ‘nice to haves’
must be eliminated. It’s irresponsible to pass this excess on to our team
members. KEEP IT SIMPLE.

Once we have distilled our idea, we build it with as little economic in-
vestment as possible. When building, we also try to incur the least
long-term technical debt and, where possible, design re-usable compo-
nents. We then release or deploy our product to real customers, gather
validation data, and iterate on our product as necessary.

With a lean process we try to rapidly and predictably produce the small-
est synchronized batches of demonstrable customer value. Sometimes

28

RO C K E T F U E L E D P RO C E S S

the customer is external to our organization, sometimes the customer is
under the same roof.

Now let’s get into the details.

29

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 4: TOTAL COST OF OWNERSHIP

Without a framework for reducing

risk, our blind assumptions can

cost an organization incredible

amounts of time and money.

30

RO C K E T F U E L E D P RO C E S S

Understanding Total Cost of Ownership - Lifecycle Economics
On our quest for process improvement and waste elimination, our fun-
damental goal is to reduce the cost of ownership (i.e. increase the ef-
ficiency and output) of our people and technology systems. Lowering
our cost of ownership over time means that we gain resources: time,
personnel, and cash—three things that are beloved commodities at any
fast-moving company.

Every decision we make has an economic cost. Because we are in-
herently trying maximize the profit of our product, we must focus on
reducing the costs and aggregated risk associated with our decisions
and system maintenance.

Too often team members lose sight of the big business picture, and
instead focus on their personal needs as a product developer. They do
not properly foresee how their decisions will affect downstream com-
ponents. They make the decision that best serves their ego, creative
pursuit or their sphere of influence. This must stop.

If our team is more than four people, when we present a wireframe,
diagram or design, we are making a bold declaration on behalf of our
team, all teams in our entire company, and our service providers. If, for
example, we work at a large subscription e-commerce company, a sin-
gle wireframe says:

•	 Our backend team has sufficient capacity
•	 Our frontend team has sufficient capacity
•	 Our fulfillment team can support us
•	 Our content team can generate the required content to launch/release
•	 This feature will support our user acquisition team

31

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

•	 This feature will support our existing revenue streams, therefore our CFO will
allow us to live for another few weeks

The list above only takes into consideration the initial launch of a prod-
uct. If we make incorrect assumptions, our cost of ownership over time
is magnified by every part of our organization that it affects.

Time After Release

C
os

t o
f I

nc
or

re
ct

 A
ss

um
pt

io
ns

Small Team,
Few Downstream

Med Teams,
More Downstream

Large Teams,
Maximum Pain

As an example of compounding economic cost, let us consider a pure
technology product that is being built to support a team or business.
Please consider the scenario below to illustrate the economic impact of
poor process and poor decision making.

32

RO C K E T F U E L E D P RO C E S S

Tech product released 60 days late 6 engineers $12,000 $140,000

Marketing team cannot execute for 60 days 2 marketers $6,000 $24,000

60 days of revenue lost $50,000 $100,000

Revenue projections were off by 50% $25,000 $150,000

Too much buggy code at month 4, month 5 lost Full team $200,000 $200,000

$614,000

Total CostCost Per Month

PRODUCT LAUNCHED

We just cost ourselves over $500,000 in four months. Furthermore,
we learned nothing during our development cycle because we did not
work in small cycles and could not release any product. We are way
behind our competitors in learnings.

Without a framework for reducing risk, our blind assumptions can cost
us incredible amounts of time and money—not to mention the incalcu-
lable benefits of learnings gained through early time to market. Being
conscious of the total cost of ownership of any piece of our system is
the most important thing we can do for our process.

Every decision we make must be thought of with a goal of minimizing
the economic impact over time. Are we accruing technical debt and
bad code? Are we creating morale problems? Are we creating unsus-
tainable production systems? Will we still be in business if we miss an-
other deadline? Usually we get excited and assume that because we
are working on something exciting, everything is great. However, build-
ing software is too risky to throw caution to the wind.

33

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Understanding The Impact of Debt
Technical debt is a common term used to describe the development of
an unstable codebase or technology stack over time. However, debt is
a term rarely used organizationally. Debt can accrue anywhere: in the
code, in the culture, in the processes, in the people. Debt is waste.
Eliminating waste through continual process improvement and efficien-
cy is at the core of lean. Waste slows us down. Waste costs us money.
Waste prohibits learning. Waste prevents a timely response to market
conditions.

Debt In Code
Code defects/bugs are a form of debt. The cost of these defects can
grow exponentially over time. The total cost is the:

•	 Cost of the initial defect
•	 Multiplied by time
•	 Multiplied by number of components it ever touched

Processes like Test Driven Development (TDD) use small batch sizes
and a test-first approach to prevent code defects from entering the
codebase before application code is even written. If some slip past,
each defect is then corrected with an appropriate unit test to prevent
that same problem from occurring again.

34

RO C K E T F U E L E D P RO C E S S

Time In Codebase

Cost of
Defects

Technical code debt is a problem for many organizations. The start-
up battlefield is littered with under-performers who lost the war against
technical debt and were unable to achieve their full potential.

Debt In Culture
Company culture is one of the hardest things to understand. What I am
sure of is that it originates from the top of an organization and filters
down. While small teams within an organization can sometimes enjoy a
measure of autonomy, surely no one is insulated from the culture set in
motion by the founders and upper management. This can be a good or
bad thing.

In my opinion, the worst culture that arises is the culture of time wast-
ers, the culture of persistent thinkers. With the ranks filled with the

35

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

non-operational likes of PhDs, MBAs, ex management consultants, life
becomes about meetings, strategy, sign-offs, blueprints, PRDs, intellec-
tual and political battles, posturing. It’s tragic for the business, but more
importantly tragic for the executors, the operators, the builders.

As Don Reinertsen once said in a Los Angeles lecture: “Ideas are like
the perfect gas of physics, they can expand to fill any container.”

We want a culture of actors, testers, builders. We rarely solve entire-
ly new problems, particularly after we have identified a viable business
model. We don’t need philosophers, we need lean operators and ex-
ecutors. Surely a proper dose of creativity and innovation are essential
for success, but I would argue that a room filled with a city’s top con-
sultants can generate a backlog of more innovative and quality ideas in
one day than a team will ever have the capacity to act on.

36

RO C K E T F U E L E D P RO C E S S

Furthermore, without testing small hypotheses under real market con-
ditions, ideas are just ideas. They are not written in stone. Just because
they originate from a ‘genius’ doesn’t make them ‘genius’ until the mar-
ket proves it.

Debt In Process
Debt in process generally arises from the traditional waterfall view of
software development, as mentioned earlier. With its static and (wrongly
assumed) predictable properties, batch sizes are large, release cycles
are long, risk profiles are immense.

We see many artifacts from a life once led:

•	 Excessive internal documentation
•	 Antiquated development methodologies
•	 Group meetings with poor agendas and tragic wastes of many people’s time
•	 20 person conference calls
•	 Minimal business process automation
•	 Excessive work in process, like prototyping too far in advance

Processes that assume software development to be fluid, unpredictable
and dynamic are far superior. Because our end product is software,
teams must let go of the nonsense and start building. The real docu-
mentation of our ideas is reliable code, automation, and a product that
has been validated by customers.

Debt In People
While debt in culture generally shows itself through an umbrella-like mist
that starts to soak into the entire organization. Debt in individual people

37

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

can be quite different, however with similar downstream effects. The
most acute example is the single expert point of failure.

It is a sad situation to see, when early employees, who are the tenured
product/engineering experts, become the single point of failure and the
gate to progress. Heads of engineering sometimes suffer this fate. Be-
cause software systems are so complex, and time is so critical, tribal
knowledge is often the norm. Without a structure for efficient and thor-
ough knowledge transfer, this expert can find it very difficult to transfer
processes and learnings. For the sake of the business, this person must
successfully remove themselves from the equation and decentralize
their knowledge. The best way is through automation. After all, there’s
nothing more efficient than showing someone in code the way a system
is supposed to work. This expert person must also decentralize their
knowledge to minimize opportunity cost -- they are much better served
to be innovating and optimizing instead of maintaining.

Another form of debt in people comes from unjustified or overly ambi-
tious empowerment. For example, how many times have we seen peo-
ple destined for failure, simply because they are tasked with things that
are outside of their sphere of expertise? Just because we want some-
one to own something and do a great job, does not mean they are fit
for the task.

38

RO C K E T F U E L E D P RO C E S S

This is most often the case at the management level. Management is
not an exact science, to be sure. However, we see many examples of
managers lacking the technical understanding to efficiently communi-
cate with, and earn the respect of their subjects. Just as in code, this
kind of debt can have an compounding effect to all downstream com-
ponents over the life of any misdirection.

39

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 5: BATCH SIZE & WORK IN PROCESS (WIP)

With the absence of a framework

for implementing constraints on

a development process, things

naturally get out of sync.

40

RO C K E T F U E L E D P RO C E S S

Understanding Batch Sizes and Risk
Batch size is the size, measured in work product, of one completed unit
of work. Cycle time is the amount of time it takes to complete one batch
of work. What we focus on with lean development is reducing batch
sizes, thereby reducing cycle times, thus increasing potential learning
points over time.

Batch size, risk and cycle time are all directly proportional. As any grows
larger, so do the others. The amount of risk we create is equal to our
batch size and cycle time, i.e. our total work in process. Risk shows
itself in the form of total investment at risk (this could be labor, invento-
ry, market opportunity cost, revenue, etc). As such, batch size is also
directly correlated to the number of blind assumptions (i.e. untested hy-
potheses) that inform our product release.

As shown in the drawing below, the graph on top performs incremental
releases over eight cycles. The graph on the bottom uses all eight cy-
cles to perform one release. The process on the bottom generates 64
times more potential work at risk.

41

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Cycle Time

Low Risk, Frequent Learnings

Risk

= 1 incremental release

64 times as much Risk
8 times as much Cycle Time
0 Learnings before potential failure

Cycle Time

Risk

Risk = Batch Size = Work in Process

42

RO C K E T F U E L E D P RO C E S S

Implementing Work in Process Constraints
Work In Process (WIP) is any ongoing work that has not been complet-
ed. The largest and most identifiable component of WIP is batch size.
As Donald Reinertsen states in The Principles of Product Development
Flow, the most simple and powerful economic driver in a development
process is a reduction in batch size, i.e. to constrain WIP.

By limiting our WIP or batch size, we achieve the following beneficial
properties:

•	 Minimum queue size
•	 Minimum iteration length and cycle time
•	 Maximum speed to completion (Minimum time to market)
•	 Minimum technical risk
•	 Minimum personnel risk
•	 Minimum documentation
•	 Fast hypothesis testing, rapid learning
•	 Minimum cost of ownership per increment of completed work
•	 Reduce the number of blind assumptions that fuel our decisions

Eliminating Unnecessary Work In Process (WIP)
Work in process goes far beyond the core development cycle. Here are
some easy questions to identify wasteful work in process:

•	 Are people creating documentation for products months in advance of any
ability to implement?

•	 Do our designers over-design every interface and add features that we clearly
do not have the capacity to complete?

•	 Do we have ‘brainstorming’ sessions in the middle of a pre-defined cycle?

43

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

•	 Do engineers over-engineer for their emotional gain? Does oversight exist to
prevent this?

•	 Are all of our teams driven by the same organization priorities? Will they be
able to cross the finish line together?

Synchronicity Is Essential
With the absence of a framework for implementing constraints on
a development process, things naturally get out of sync. This is very
dangerous to an organization because upstream production will not re-
spect downstream capacity. This relationship becomes very inefficient
because different teams cannot unite around a common business goal.
Furthermore, the collective parts of the organization become unable to
share the responsibility of overall business success. Unsynchronized
teams are prone to scary risk profiles, extreme waste, and hard failures.

An organization will end up with team-specific velocities, work in pro-
cess, batch sizes and cycle times. If any other teams or the entire orga-
nization are dependent on a main large branch (or batch of team work),
as seen below, the failure or misdirection of that main branch could be
catastrophic.

44

RO C K E T F U E L E D P RO C E S S

A common example of synchronicity risk is the ‘swat team.’ Some-
how the rest of a development team is either too busy or perceived as
lacking enough talent to complete an initiative. A specialty team will be
brought in to work in a vacuum, apart from the standard process. The
failure points for this become misdirection, incorrect assumption and
difficult project integration with the greater system.

Synchronize Small Batches Around Common Goals
The ideal scenario is for all teams in an organization to develop a pre-
dictable development cycle, with proper cadence and inter-team deliv-
ery. When upstream units respect downstream capacity, much of the
unnecessary work in process is naturally eliminated, therefore creating
more resources for revenue generating initiatives or optimizations.

45

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 6: TOOLS & METHODOLOGIES

Any viable process methodology

directly attempts to reduce

batch sizes, reduce risk, improve

transparency and predictability,

and set a sustainable cadence to

our development cycles.

46

RO C K E T F U E L E D P RO C E S S

Tools are just artifacts of our foundation
The main reason I love the philosophy behind lean development is that
it is deconstructive; it’s about the idea, not the tools. Teams and leaders
often treat tool discovery as an epiphanic moment. However, because
lean philosophy represents a framework for thinking and analysis, it is
the deconstructive pursuit, not phenomenal luck or happenstance, that
naturally leads us to tool discovery.

Agile, scrum, kanban, fifo, tdd, mvp, continuous integration, automation
scripts. These are just a few words we hear every week in a modern
software shop. They are all artifacts of trying to improve efficiency, re-
duce waste (time & labor), improve predictability, and reduce organiza-
tional (economic) risk.

Sometimes it’s easy to get distracted by the details of a particular de-
velopment methodology like Scrum or Kanban. How we use any really
doesn’t matter, it’s all about generating economic results for the com-
pany and building a sustainable, ethical and respectful environments for
employees.

One issue that I consistently see with development methodologies is
that people have a hard time agreeing on exactly how they should be
implemented. For example, I’ve never seen a Scrum process imple-
mented the same way across two teams. That’s because things like
people, culture, technology and org structure dictate the extent to
which things are possible.

Overview of some popular development methodologies for startups
Our chosen process methodology will be dictated by experience, org
structure and desired outcome. Any viable process methodology direct-

47

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

ly attempts to reduce batch sizes, reduce risk, improve transparency
and predictability, and set a sustainable cadence to our development
cycles.

The same attributes that make software engineers so brilliant and fo-
cused are the same attributes that can cause efficiency disruptions in
product development. Engineers live to solve the next problem, to con-
struct the next beautiful virtual world, to use the next enticing framework
or tool. This can be a major distraction and create problems for our
business. Development teams need structure, priority and transparency.

Agile
Agile development is a general framework for thinking about process.
It is best described by the Agile Manifesto, which made it’s way online
in 2001 and was drafted by Kent Beck, Ken Schwaber and 15 others.
Generally, Agile describes a process for creating the shortest feedback
loop through the following cycle:

•	 Hypothesis (or Test for test-driven software development)
•	 Build
•	 Deploy & Learn
•	 Iterate

Scrum
I have found Scrum to be the most effective process for teams larger
than three. As teams grow, we need a process that can be decentral-
ized and applied agnostically across groups with different disciplines.
Teams naturally become co-dependent as they splinter. Scrum cycles
(also known as sprints or timeboxes) allow separate teams to maintain

48

RO C K E T F U E L E D P RO C E S S

the same delivery cycle and cadence, thereby minimizing synchronici-
ty issues between teams, and associated organizational risk (as men-
tioned in the end of Chapter 5). Scrum also mandates that impediments
are immediately removed or improved for team members, creating a
more ethical and compassionate work environment. This point should
not be overlooked.

Scrum has the following components:

•	 Planning meeting
•	 Cycle or work iteration, bound by time (usually in weeks)
•	 Point system for work product based on developer effort (can be a proxy for

estimated time)
•	 Daily standup
•	 Retrospective

Let us use a one week cycle/release length as example. It is important
to release the software from any Scrum cycle in its respective cycle. A
team of QA and release engineers should not be responsible for fin-
ishing a release. The definition of done for developer tasks should be
functional, deployed production code. If they cannot do this in a re-
lease, assign them less work. If there are organizational factors that pre-
vent them from achieving this level of quality, those factors should be
promptly removed or improved. For example, lack of automated config-
uration management, deployment systems or build pipelines.

** For anyone without an introduction to more sophisticated Scrum im-
plementations, I recommend reading Scrum & XP From The Trenches
by Henrik Kniberg.**

49

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Step 1: Planning Meeting
Team leaders agree on product priority. Team members distill product
components and volunteer for pieces of work by estimating level of ef-
fort. Because a team will learn its velocity, or production capacity of a
cycle, they can provide a reasonably close estimate on each task. Indi-
viduals should prepare for this meeting in advance so no time is wasted.
One of the most important parts of Scrum is that no member has the
right to waste a group’s time.

Index Cards
The planning meeting should result in task level work. The old-school
way is to use index cards, with the name of a feature, or user story on
the front, and all acceptance criteria on the back. The index card is the
ultimate work constraint. If your scope of work for a given increment of
work cannot fit on an index card, it’s simply too big. This is particularly
so with acceptance criteria. If acceptance criteria cannot fit on the back
of an index card, distill the scope of work to end up with the minimum
requirements for a demonstrable increment of customer valued work.

An excellent book about user stories and acceptance criteria was writ-
ten by Mike Cohn, called User Stories Applied.

Step 2: The Sprint, also called the Cycle or Work Iteration
After the planning meeting, the team is ready for its sprint. The length of
the sprint = one cycle. As discussed earlier, the total work underway at
any time during a cycle is called WIP. One thing to note about batch size
compression as it relates to Scrum, is that we should strive for a reduc-
tion in batch size at any level of magnification. For example, each task
that a developer agrees to build in a cycle should represent the smallest

50

RO C K E T F U E L E D P RO C E S S

demonstrable unit of customer value, ideally no more than 4-8 hours of
uninterrupted work. Moving one level higher, we should strive to keep
the team’s overall sprint or cycle length as short as possible (ideally one
week).

As a team, because we were prepared with disciplined priority and dis-
tilled ideas, once a cycle is started, no single member at any level of the
organization may interrupt it. If the CEO wants something, he can’t get
it. If the product manager changes her mind, she’s out of luck. It is the
important job of the team leader or scrum leader to block all external
interruptions or distractions for the team. It is also the team or scrum
leader’s responsibility to remove any and all impediments to the team’s
work that arise during a cycle. If a team is working in one week cycles,
the maximum amount of risk we can generate is four days of labor. That
is a very small amount of risk distributed across given our disciplined
preparation.

Just as important, interrupted cycles cause three problems: engineers
lose their momentum and never regain it, managers lose their authority,
engineers feel slighted. It is disrespectful to provide engineers with im-
properly prioritized business and feature goals. They are not pawns to
be moved about without proper planning.

Step 3: The Daily Standup
The daily standup is one of the most important components of Scrum.
In fact, it closely represents the name of the methodology. Each morn-
ing team members gather together for a quick status update, or scrum,
before continuing on. Just as in rugby, the team has the overall goal
of winning. However, synchronicity is key. The match moves in small
increments of intense activity. If half of the team members are oblivious

51

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

to the movements of their teammates, insufficient work product will be
produced to achieve victory. It’s akin to a rugby flanker trying to score a
tri without the ball.

In each daily standup, we report the following, with absolutely nothing
extra:

•	 Am I blocked on anything?
•	 Do I need help from a team member on something?
•	 What am I doing today?
•	 If absolutely essential to tell the team (which is rare): What did I do yesterday?

This method of daily standup should take no more than three minutes
for a team of six people. No one should be allowed to talk about per-
sonal matters, strategize, or get off course. All further discussion should
be taken offline. People should always be discouraged from wasting
time in a group setting, it is extremely costly. The daily standup is not a
place to practice public speaking. Future lobbyists, senators and thes-
pians should practice in front of the mirror at home, not in front of the
team.

*The standup should always be done standing. No sitting. No leaning.

Step 4: Retrospective
This should be treated like a standup. Address any issues or interrup-
tions of the past cycle, and any improvements the team can make in
the upcoming cycle. Take all other conversations offline.

That’s it. Simple. Scrum is also convenient because employees work
Monday-Friday, and that length of time can provide a nice timebox.

52

RO C K E T F U E L E D P RO C E S S

Also, timeboxes provide a visual and literal construction for an incre-
mental release of finished product.

Kanban
Kanban is a simple system of modular process constraints. There are
three steps associated with Kanban:

•	 Queued or Ready
•	 In Process
•	 Completed

The goal of Kanban is to limit the amount of work in process, also
known as WIP. For example, each team or developer may only have
two in-progress tasks. This method of Kanban is the most simple pro-
cess constraint you will find.

I don’t care for Kanban because it is not accountable to a timebox and
loses the cadence and rhythmic cross-team achievement found with
Scrum. Furthermore, caps on the number of ongoing items become
quite nebulous, and team members are less incentivized to properly es-
timate work without a structure for consistent weekly milestones and
deadlines.

However, Kanban can create a beautifully simple FIFO (first in, first out)
system. I suggest using something like the Simple Team Principle (dis-
cussed in the next chapter), combined with point or time based con-
straints on all work in process, as opposed to feature or project-based
constraints on in-process items.

53

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

CHAPTER 7: THE SIMPLE TEAM PRINCIPLE

Regardless of team structure, if we

use each other to enforce simple

thinking, we get to the core of lean

without all the fuss.

54

RO C K E T F U E L E D P RO C E S S

“Keep It Simple, Stupid.” These words have been offered by uncles and
grandfathers the world throughout. They are certainly keying on some-
thing very powerful.

By keeping things simple, we achieve the following beneficial results
(as seen in Chapter 4):

•	 Minimum work in process
•	 Minimum queue and batch size
•	 Minimum iteration length
•	 Maximum speed to completion (Minimum time to market)
•	 Minimum technical risk
•	 Minimum documentation
•	 Fast hypothesis testing, minimum cycle time, rapid learning
•	 Minimum cost of ownership
•	 Reduce the number of blind assumptions that fuel our decisions

The Simple Team Principle
I would like to propose the Simple Team Principle as something ev-
ery team can use as the foundation for lean decision making. Most of
the teams we work with in fast-moving software shops are between
2-8 people. Some teams are cross-functional (dev, UI, product, exec).
Some teams are problem-specific (API team, data warehousing team,
frontend team). Regardless of team structure, if we use each other to
enforce simple thinking, we get to the core of lean without all the fuss.

To begin, your team starts with a high-value product idea that leaders in
your organization agree to test. First, that idea should be deconstructed
and distilled to its essence. What is the part of the idea that will gener-

55

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

ate the highest value? Agree to test that first, learn from your data, then
repeat.

1. Simple Scope Agreement
What is the most simple scope that will lead to the successful valida-
tion of this idea? Generally, this scope proposal should be non-annotat-
ed wireframes or diagrams. I prefer drawing on a scrap sheet of paper
or a whiteboard first, then bouncing the idea off others for a specified
amount of time, like 15 minutes max. Then move to more formal wires
without annotation. That should be sufficient for agreement. Distilling
the scope on paper first is very important. Always ask yourself, do I real-
ly need x,y and z to create a releasable product?

Does everyone agree that we have chosen the most simple scope that
can lead to the validation of our idea?

 If yes, move to next step. If no, distill our scope.

2. Simple Build Agreement
How can we technically build or validate our idea in the most simple
way? We want to minimize cost of ownership, promote easy mainte-
nance, reusable components, etc. If we are wrong, the cost of starting
from scratch should also be low. Can we use an external service to test
our idea? Has someone already built the tool to help us build and test
our idea? The list of possible service providers is becoming limitless.

56

RO C K E T F U E L E D P RO C E S S

Does everyone agree that we have chosen the most simple build path
that can lead to the validation of our idea?

If yes, move to next step. If no, distill our build scope.

3. Simple Validation Agreement
What is the minimum amount of data we can gather to validate our idea,
and how will we get that data? How many installs, visitors, purchases,
leads, sales, contracts, referrals? All measures of data should back out
to a raw dollar figure. For example, we agree to spend $1,000 for in-
app purchases. If we make back $500 in 30 days, we think we can
optimize further and that our customer LTV will naturally increase. As
another example, sometimes the validation is time: delivering a working
piece of software using the tools decided on above, in the minimum
(and promised) amount of time. Time can always be valued in man-
hours, man-days, date of release and revenue per day, etc.

Does everyone agree that we have chosen the most simple validation
requirement for our idea?

If yes, move to next step. If no, rethink and distill
our validation criteria.

57

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

We Have Completed One Iteration
Assuming we have proven that our idea is valid, every next step should
be an iteration of demonstrable progress. Each next step should be
accountable to the requirements above. Forward progress and experi-
mentation should always be bound by simplicity. It should not matter if
you’re building out a massive sales funnel, a sophisticated deployment
process or buying installs for an app.

Furthermore, any process tools that you decide to incorporate can be
treated like an idea or product and bound by the Simple Team Principle.
For example, you want to use an agile tracking software. Ask yourself all
of the same questions above:

1.	Simple Scope Agreement. First, why do we want to do this? To improve trans-
parency and accountability. What should it be able to do? Show and track
tasks, email us, integrate with git and our build server. Must support inheri-
tance and bundled ‘cards.’

2.	Simple Build Agreement. Is building this ourselves worth the investment? No.
What is on the market that serves our needs? Will this product be easy to
maintain over time? Can this product grow with our team?

3.	Simple Validation Agreement. We agree that we cannot risk disrupting the
entire team with a hard change. Using our platform of choice, two people will
model six example workflows for two weeks alongside our current process.
If we are satisfied with the results, we will iterate to implement our chosen
platform with the entire team.

58

RO C K E T F U E L E D P RO C E S S

CHAPTER 8: STRUCTURING TEAMS FOR SUCCESS

Consistency, predictability,

cadence. These things carry our

team over time.

59

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Building Ethical Systems
Talk to most investors and founders, and they will advocate for a re-
lentless employee culture of working 80 hours per week, free meals,
eating and sleeping at the office. Where did we acquire this mentality? It
is completely unethical. If our engineers or product developers need to
work 80 hours per week to achieve success, maybe we should rethink
what we are building and re-prioritize their workflow.

Consistency, predictability, cadence. These things carry our team over
time. Teams that frequently work through the night fueled by the latest
energy drink are prone to erratic and emotional behavior, unreliability,
and health crashes. Furthermore, if we encourage developers to keep a
healthy work-life balance, they will surely use some of their free energy
to solve problems and create efficiencies. Their brains will also solve our
problems with less fatigue. They will operate within any constraints our
culture mandates.

60

RO C K E T F U E L E D P RO C E S S

Confidence in a well-structured process is essential for long-term
success.

Team Structure
Most holistic software development teams are comprised of the follow-
ing functional components:

•	 Information Architecture & User Experience/Workflow Design
•	 Backend Development
•	 User Interface Design (graphic design)
•	 Frontend Development

Most importantly, all essential functional design questions should be an-
swered on paper, at the diagram or wireframe level. This is the least
expensive way to develop and distill ideas.

Second, it is always more efficient to separate ‘function’ from ‘fashion.’
When we combine UI design with functional development, the cost of
change becomes much higher.

With our ideal structure we end up with a pipeline of planning, paral-
lel backend development and visual design preparation, and finally the
‘skin’ or frontend development that can include complex javascript and
interface components.

61

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Work In Parallel

IA / Wireframes Frontend Dev

Backend Services

UI Designs

This structure may seem like it sets up gates and blocks. However, be-
cause our cycle time or iteration length is as short as possible, ideally
one week, there is a maximum of one cycle of waste for Backend Ser-
vices / UI Designs. By the time a feature gets to the frontend team, it
should change very little.

62

RO C K E T F U E L E D P RO C E S S

CHAPTER 9: SKETCHES, WHITEBOARDS &
WIREFRAMES

It is our essence, or the big idea,

that is both extremely valuable, but

can also be developed and shared

at an extremely low cost.

63

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Much like mining for gold, so should our processes sift out large chunks,
top to bottom (in our case, large chunks of risk). As discussed previous-
ly, if we can eliminate maximum waste early on in a process, our overall
cost savings can be phenomenal.

Iterating through ideas in functional code is very expensive. It lends itself
to high man-hour costs, high cost of correction and increased techni-
cal debt. As such, any complexity evaluation we can do on paper (or a
whiteboard) is essential. When we say paper and whiteboards, we want
visuals, not novels. Words and paragraphs are a very poor represen-
tation of software. Workflow diagrams and wireframes are much more
efficient. Our idea development process should not require traditional
written documentation.

Afraid to Show Our Progress
Throughout my career, I have noticed that people rarely like to show
people their ideas until they are ‘ready.’ Unfortunately ‘ready’ is a neb-
ulous and subjective state of being, often representing a large batch of
work that others review and say, “Wow, this probably took you a lot of
time…” Who cares how much time was invested if the underlying ideas
are misdirected?

With lean, we want early information to influence our direction. Sketch it
on a piece of cardboard, or a napkin, or a whiteboard and share it with
your teammates. Most of the value we create is in a larger idea, then
we fine-tune with details as needed. If we cannot ‘sell’ the big idea to
people immediately, there is a problem.

64

RO C K E T F U E L E D P RO C E S S

Idea Development

High-Risk Details

Low-Risk Details

It’s like building the most beautiful boat in the world, except it sinks in
the marina.

•	 What kind of beautiful wood shall we use?
•	 We need bright sails with awesome logos “Dr. Adventure, M.D. Ph.D. MBA”
•	 Oh, and we need a great radio system
•	 Top of the line GPS and nav, check
•	 We’re going to want to fish off this boat too, definitely
•	 Ok, does it have a large beer cooler? Perfect.

Oh, wait, we forgot to make sure this beautiful vessel can float. Just
like with boat building, misdirected investments in complex software are
rarely recoverable.

Do It Like Picasso
There is a famous story where Pablo Picasso pays his bar tab with a
napkin sketch. Was it what we know of as a complete work of art?

65

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Probably not. However, given the circumstances it was the minimum
investment for the maximum return. Just like the tenured product devel-
oper, Picasso was an expert.

If we are confident in our skills, we should approach things the same
way. It is our essence, or the big idea, that is both extremely valuable,
but can also be developed and shared at an extremely low cost. For the
bartender, it was the right product. In our example of idea generation
and distillation, our teammates are the bartender.

66

RO C K E T F U E L E D P RO C E S S

CHAPTER 10: FINANCIAL MODELING

When asked how much the young

entrepreneur needed to raise for

one year of operational capital, his

answer was a confident $1.5M.

67

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Simple financial modeling is often overlooked as one of the most helpful
instruments in understanding the potential value created by a proposed
new product. To use a real-life example, I recently had coffee with a
young Internet entrepreneur. He was working on a startup targeting the
crowd-funding space that would provide a ‘freemium’ value-added ser-
vice to existing crowd-funding projects. He estimated the total market
of crowd funding projects to be around 100,000 projects per year. Ok,
great.

When asked how much the young entrepreneur needed to raise for one
year of operational capital, his answer was a confident $1.5M.

So we target that 100,000 potential customers and let’s say we convert
5% into paying customers. We have 5,000 paying customers. Because
crowd funding projects are usually singular events, he suggested that
each paying customer will net us $50 per year. We will make $250,000
in top-line revenue per year. After we reviewed the numbers in our head
for a few moments, he agreed that a net $1.25M operating loss each
year might not please his investors.

The example above is incredibly common. As product developers and
entrepreneurial types, the lure of the pursuit, of building something ex-
citing, often causes us to lose track of important details. There have
been many times in my career where I’ve had an idea that was roman-
tic and alluring, however after modeling out the entire picture, the idea
no longer seemed viable at all. Small details can change one’s entire
perspective.

68

RO C K E T F U E L E D P RO C E S S

As we move forward with any idea, it’s easy to create a simple financial
model to analyze how the actors in a system affect our bottom line. Any
thorough financial model should address the following (at a minimum):

•	 Time Increment (monthly or quarterly)
•	 Gross Revenue
•	 Cost of Goods Sold (COGS)
•	 Cost of Selling (also known as SG&A)
•	 Addressable Market
•	 Market Penetration
•	 Conversion Rate
•	 Cost of Customer Acquisition
•	 Employee Expense
•	 Available Cash Balance per Time Increment

Below is a generic table that illustrates the above information.

69

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

	 Jan 	 Feb 	 Mar 	 Total
 Summary 				
 Gross Revenue 	 $700 	 $2,800 	 $6,300 	 $9,800
 COGS 	 $(140)	 $(480)	 $(900)	 $(1,520)
 Cost of Selling 	 $(24,700)	 $(27,600)	 $(30,900)	 $(83,200)
 EBITDA 	 $(24,140)	 $(25,280)	 $(25,500)	 $(74,920)
				
 Revenue 				
 Addressable Market 	 30000	 30000	 30000	
 Estimated Tangible Customers 	 2000	 4000	 6000	
 Conversion Rate 	 1%	 2%	 3%	
 Total Customers 	 20	 80	 180	
 Average Order Value 	 $35 	 $35 	 $35 	
 Total Revenue 	 $700 	 $2,800 	 $6,300 	 $9,800
				
 Cost of Goods Sold 				
 Cost of Computing Per Customer 	 $(7)	 $(6)	 $(5)	
 Total COGS 	 $(140)	 $(480)	 $(900)	 $(1,520)
				
 Cost of Selling 				
 Cost Per Customer Acquired 	 $(60)	 $(50)	 $(40)	
 Event Sponsorship 	 $(300)	 $(400)	 $(500)	 $(1,200)
 Total Marketing Cost 	 $(1,500)	 $(4,400)	 $(7,700)	 $(13,600)
				
 Employee Expenses - Tech 	 $(20,000)	 $(20,000)	 $(20,000)	 $(60,000)
 Employee Expenses - Customer Service 	 $(3,000)	 $(3,000)	 $(3,000)	 $(9,000)
 Web Hosting & Related Services 	 $(200)	 $(200)	 $(200)	 $(600)
				
 Total SG&A 	 $(24,700)	 $(27,600)	 $(30,900)	 $(83,200)
				
 Beginning Cash Balance 	 $300,000 	 $275,860 	 $250,580 	

70

RO C K E T F U E L E D P RO C E S S

CHAPTER 11: KEY METRICS & SUCCESS MEASUREMENT

Team measurement should

always be closely aligned with

organizational business priorities.

71

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Metrics and Validation Analysis
As learned product developers we must operate under the following
assumptions:

•	 Everything has a value
•	 Everything can be measured
•	 Time costs money

An important place to start is with the declaration that we must be able
to answer any question that might arise. But what to know and why,
that is the most important thing for a startup. As any data-driven startup
will tell you, data can quickly overwhelm us until we have more data
than we can reasonably act on. How do we distill all of this into action-
able data?

Perhaps a nice place to start is to have everyone on our team identi-
fy their most important economic performance and waste indicators.
Those indicators might be aggregated into a dashboard. For example:

•	 CTR on emails
•	 Purchase rate from emails
•	 Unsubscribes on emails
•	 Conversion rate through each step of a funnel
•	 Code Rollbacks
•	 Cost per install per channel
•	 Aggregate cost per install
•	 Shares / Uniques
•	 Pageviews / Uniques
•	 Return Rate
•	 Chargeback %

72

RO C K E T F U E L E D P RO C E S S

•	 Points / Player

The above dashboard example is yet another candidate for the Simple
Team Principle.

Team Measurement
Team measurement should always be closely aligned with organization-
al business priorities. Did product dev or tech or customer acquisition
provide for the rest of the organization when required? For example,
was marketing empowered by tech, was tech empowered by content,
was physical product empowered by operations?

Some technology teams focus on agile tracking velocities and burn-
downs. At the end of the day nothing matters except for delivering on
time for the business in micro cycles. Again, a reason I favor the weekly

73

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

iteration length or sprint cycle. Long burndown charts and aggregate
point tracking over time imply long release cycles -- as fast moving
product developers, long release cycles come to represent relics of ev-
erything we are fundamentally against.

Supporting deadlines and customer-facing deliverables is also very im-
portant to retain team urgency. Because we respect our employees and
have encouraged them to enforce structured development processes, it
will be very difficult to over-stress the team in the presence of important
business deadlines.

Micro Experiment Testing & Optimization
Optimization is very important over the life of any product. Companies
like Amazon, Google, Facebook and Etsy have proven this. When we
launch a product, we must always be prepared to invest in incremental
improvements to the product. There are a host of services that can help
with this. Again we focus on short iteration length and small batch sizes.
In essence, each release is an experiment. Perhaps next week’s priority
is optimizing a previous product version. Perhaps we find ourselves in
dire straights, and must experiment in a more drastic fashion. Which-
ever scenario we encounter, so long as we know that our risk profile is
low, we set the table for success and rapid learning.

74

RO C K E T F U E L E D P RO C E S S

CHAPTER 12: WHAT MAKES A GREAT DEV TEAM

Often we hear of teams looking

to hire ‘hackers’ and ‘ninjas.’

Experienced, prideful, professional

engineers are not hackers.

75

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Our team is everything. As such, lean practices should be mandatory.
Lean allows teams to consistently feel the satisfaction of shipping prod-
ucts to customers with associated learnings. Lean allows teams to stay
on point with the most relevant data.

As we covered earlier, people can greatly influence the total cost of
ownership of a system. As we create our blueprint for personnel and
hiring, it is essential to keep this in mind. Hiring managers often feel un-
derwhelmed with the level of available talent and end up compromising
in order to move forward. While this is quite a reality of our industry, it
is very important to remember what our ideal profile is. Even if we have
to compromise over the short term, we should always try to ‘hire up.’
For example, we hire an engineer who we do not feel comfortable pro-
moting into a management position, that’s ok sometimes. Unfortunately
that person might feel compelled to look for a new job, but we cannot
compromise the integrity of our long-term vision.

As you look to hire the following positions, I offer some points to keep
in mind. After years of recruiting and hiring, I don’t like to compromise.
I don’t feel it’s necessary. If we build the right kind of systems, we will
naturally attract top talent. If we follow that same spirit for many years,
then we end up with a strong network of like-minded individuals. Hiring
becomes much easier.

Product Managers
The product manager title is one of the most nebulous and hijacked
positions in all of software. Software development is one of the few in-
dustries where something like a person who has never written a line of
code can lead a team of code writers. For example, I cannot show up
on Wall Street with an MBA and convince everyone that I am fit to be

76

RO C K E T F U E L E D P RO C E S S

managing all trading for a hedge fund. I cannot show up at a Local and
decide that I’m fit to lead the next round of industrial welders working
on a suspension bridge. Somewhere along the way, our industry has
forgotten about craft, mastery, apprenticeship.

It is impossible to understand the nuanced economic cost and risk as-
sociated with proposed new products without having built software in
the past. People who have built real software create organizational effi-
ciencies in the way they communicate and remove excess waste early
on in a development process.

Talk to any engineering team and they will tell you that a consistent
cause of headaches are product proposals that lack the specialized un-
derstanding needed to operate within a defined time and labor scope.

Analytical thinking and an MBA are just not sufficient, I want people who
have PROVEN with real working product that they understand software.
Just because someone refreshes TechCrunch five times a day and can
talk the talk about Agile processes does not make them fit to lead and/
or be the upstream resource for a team of engineers.

If innovative or high-level thinking is what you’re after, it might make
sense to frequently pair a highly operational and experienced software
builder with consultants who can provide more innovative strategy at
important times in a product’s lifecycle.

Experienced Engineers
Senior level engineers are said to be up to 10x as productive as ju-
nior level engineers. If we agree that time to market, minimum technical

77

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

debt, and the smallest risk profile are of paramount importance to the
business, junior developers do not make economic sense.

Often people reference Google or Facebook as hiring any undergrad
engineer and paying them $100k+ just to show up. What those same
people will never mention is that Google and Facebook are 1000+ per-
son organizations with the capacity to properly train engineers. Training
young developers takes years, not months. Small teams will have lit-
tle capacity for training people and enforcing the rules while moving at
light-speed.

In senior engineers, we want prideful individuals who feel it is their re-
sponsibility to write production quality code. As members of small
teams they do not need QA engineers because they surround them-
selves with the tools to automate the testing and deployment of their
code into production.

Ultimately, quality engineers and personnel are attracted to a well struc-
tured, professional, efficient and ethical environment. Often we hear
of teams looking to hire ‘hackers’ and ‘ninjas.’ Experienced, prideful,
professional engineers are not hackers; they are architects, masters
of mission critical business systems, leaders in application availability,
throughput and performance. They have served people over a billion ad
impressions, they have built real-time gaming systems, they have pow-
ered billion object search systems.

78

RO C K E T F U E L E D P RO C E S S

These quality people will not work for amateur dev shops, that’s why
they are so hard to hire. Build a great process and you will naturally
attract high quality talent. It’s a spiritual trend, like mountaineers drawn
to the range.

Systems Engineers
Automation, automation, automation. If your systems people do not
employ tools that provide 100% automation, you’re in for a long and
painful ride to the top. In the era of smaller, virtualized server environ-
ments, your team will have to manage a lot of instances at any measure
of reasonable scale. Sure, your systems person with experience rack-
ing machines might be amazingly efficient running three super-powered
web servers. However, always consider how well they will handle 120
machines across four tiers of development environments, often with

79

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

each tier containing more than five different configurations for things like
web server, cache server, database, search system, queue server, etc.
This kind of setup is grossly inefficient to maintain without proper auto-
mation capabilities.

Hiring Personalities
Never compromise and hire people because they seem smart, while at
the same time you recognize deficient social or interpersonal behavior.
Your team members will spend some of the most intense and focused
time of their life together. No matter how smart someone looks on pa-
per, people with personality issues who seem confrontational, stubborn,
narrow minded—coincidently, they build similar types of systems—in-
flexible and fragile, incapable of adjusting to an environment that is dy-
namic and unpredictable. In an environment where tool use and flexibil-
ity are paramount, there is rarely a need for the hero or ‘artist as genius’
in an engineering organization.

80

RO C K E T F U E L E D P RO C E S S

CHAPTER 13: GO MAKE A CUSTOMER HAPPY,
TOMORROW

As we make our systems more

efficient, we are able to ‘listen’ to

our customers more often. They

prove to us what they like.

81

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

In closing, what lean really teaches us, as illustrated by the whole-
sale failures of young startups, is that our software startup industry is
rooted in risk and assumptions. We need frameworks for thinking that
systematically reduce the assumptions that drive our decisions and
growth, thereby reducing the risk we encounter while trying to innovate
and incubate new products. The tools we find along our path are just
artifacts born from continually trying to improve the way we build and
deliver working software.

Never has there been a more exciting time for a product developer or
entrepreneur. They call our funding “Adventure Capital” for a reason. As
our suite of tools becomes ever more commoditized, compressing our
time to market becomes easier and cheaper. Never before has it been
so easy to experiment with business ideas.

We are on a learning adventure with our coworkers, but most impor-
tantly, with our customers. As we make our systems more efficient, we
are able to ‘listen’ to our customers more often. They prove to us what
they like with their attention or their hard-earned money.

82

RO C K E T F U E L E D P RO C E S S

CHAPTER 14: RANDOM MUSINGS

If you think you’re moving quickly,

try 10x harder. Strive to find

the limits of every part of your

organization and refuse to be afraid

of failure.

83

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

Good companies are always in Beta
Many companies consider their Beta period to be a time of uncertainty
and idea validation. Strong companies are always in Beta. They are al-
ways running experiments at every level of magnification to learn more
from their customers.

Advice for Small Startup Teams
Ok, so you have your ‘big’ idea, we get it. And congratulations, you
somehow tricked your investors into believing you can build this amaz-
ing construct in four months.

Now it’s time to start thinking small. Focus on what you can complete
today. While you’re waiting around for business deals, experiment with
more of your hypotheses. The cost of experimentation goes down every
day. Ship something to the customer tomorrow if you can.

If you think you’re moving quickly, try 10x harder. Strive to find the limits
of every part of your organization and refuse to be afraid of failure. The
speed you’re afraid of is what separates real growth from just another
competitor. Also, assume there is a tool on the market for automating
almost every business process. Look for places to implement automa-
tion whenever possible.

Advice for Small Teams in Large Organizations
Set an example for the rest of the company. Compassionately educate
others upstream from you. Inspire other teams to eliminate waste and
improve efficiency.

84

RO C K E T F U E L E D P RO C E S S

Advice for Product Managers
Think like an agile software developer. Always match the cadence and
throughput of your engineers. Don’t plan and design excess product
inventory that no one can build for months. If your business operates at
any respectable pace, something will happen next week that changes
the way you think about the world, rendering your ‘plans’ useless. Al-
ways thoroughly research the products offered by service providers as
they have likely solved a problem that takes years to master. Through
them you may be able to gain a huge competitive advantage via rapid
time to market.

Advice for Engineers
Support the business. Stay away from shiny gold ideas as they are al-
most always a quagmire. Your distraction can turn into serious failure in
a heartbeat. Remember that someone out there solved a problem 100x
the size of yours with what many consider to be unsexy, commodity
technologies and frameworks. Use their learnings to your benefit. Stay
away from unproven technologies; when your business grows rapid-
ly, it will be infinitely harder to hire. Furthermore, it’s difficult to predict
the failover qualities of new system components that have not yet been
stressed in your type of application environment. Ok, so you became
Facebook or Instagram? Congrats, now you have real (unique) prob-
lems and beers are on me.

85

A DVA N C E D L E A N P RO D U C T D E V E LO P M E N T F O R S O F T WA R E S TA RT U P S

About the Author
William Belk’s core focus centers around opera-
tional incubation, Lean process improvement,
product design/strategy, user experience and
complex data problems. With over a decade of
early stage startup experience, William has
served in roles ranging from founder, investor,
first-employee, mentor, community organizer,

strategist and advisor.

	FOREWORD
	CHAPTER 1: PRODUCT 101
	The Beauty of Deconstruction
	User Centered Design
	The Declaration

	CHAPTER 2: REALITY AND CONSTRAINTS
	Traditional Models of Product Development
	What is the Reality of Building Software?
	Mastery & Unrealistic Behavior
	Prioritize The Real Value We Are Creating: ROI Reality
	The Beauty of Constraints

	CHAPTER 3: INTRO TO LEAN
	What is Lean?
	Lean Startups and the Democratization of Learning
	Concept to Iteration

	CHAPTER 4: TOTAL COST OF OWNERSHIP
	Understanding Total Cost of Ownership - Lifecycle Economics
	Understanding The Impact of Debt
	Debt In Code
	Debt In Culture
	Debt In Process
	Debt In People

	CHAPTER 5: BATCH SIZE & WORK IN PROCESS (WIP)
	Understanding Batch Sizes and Risk
	Implementing Work in Process Constraints
	Eliminating Unnecessary Work In Process (WIP)
	Synchronicity Is Essential
	Synchronize Small Batches Around Common Goals

	CHAPTER 6: TOOLS & METHODOLOGIES
	Tools are just artifacts of our foundation
	Overview of some popular development methodologies for startups
	Agile
	Scrum
	Step 1: Planning Meeting
	Index Cards
	Step 2: The Sprint, also called the Cycle or Work Iteration
	Step 3: The Daily Standup
	Step 4: Retrospective
	Kanban

	CHAPTER 7: THE SIMPLE TEAM PRINCIPLE
	The Simple Team Principle
	1. Simple Scope Agreement
	2. Simple Build Agreement
	3. Simple Validation Agreement
	We Have Completed One Iteration

	CHAPTER 8: STRUCTURING TEAMS FOR SUCCESS
	Building Ethical Systems
	Team Structure

	CHAPTER 9: SKETCHES, WHITEBOARDS & WIREFRAMES
	Do It Like Picasso

	CHAPTER 10: FINANCIAL MODELING
	CHAPTER 11: KEY METRICS & SUCCESS MEASUREMENT
	Metrics and Validation Analysis
	Team Measurement
	Micro Experiment Testing & Optimization

	CHAPTER 12: WHAT MAKES A GREAT DEV TEAM
	Product Managers
	Experienced Engineers
	Systems Engineers
	Hiring Personalities

	CHAPTER 13: GO MAKE A CUSTOMER HAPPY, TOMORROW
	CHAPTER 14: Random Musings
	Good companies are always in Beta
	Advice for Small Startup Teams
	Advice for Small Teams in Large Organizations
	Advice for Product Managers
	Advice for Engineers
	About the Author

